

DNV GL Headquarters, Veritasveien 1, P.O.Box 300, 1322 Høvik, Norway. Tel: +47 67 57 99 00. www.dnvgl.com

Commercial In Confidence Bladed Linux Batch Processing.docx

DISCLAIMER

Acceptance of this document by the client is on the basis that Garrad Hassan & Partners Ltd is not in any

way to be held responsible for the application or use made of the findings of the results from the analysis

and that such responsibility remains with the client.

COPYRIGHT

All rights reserved. Duplications of this document in any form are not allowed unless agreed in writing by

Garrad Hassan & Partners Ltd.

© 2020 Garrad Hassan & Partners Ltd.

DNV GL

One Linear Park, Avon Street, Temple Quay, Bristol, BS2 0PS, UK

www.dnvgl.com

bladed@dnvgl.com

www.dnvgl.com

Page 2 of 24

 Bladed Linux Batch Processing.docx

Table of Contents

1 BACKGROUND .. 3

2 AIM ... 3

3 SCOPE ... 3

4 LIMITATIONS ... 3

5 BLADED ON LINUX .. 3

5.1 System Requirements 3

5.2 Unsupported Functionality 4

6 BLADED BATCH PROCESSING .. 4

6.1 On Windows 4

6.2 Transitioning to Linux 4
6.2.1 Input Preparation for Linux 6

7 LINUX BATCH PROCESSING TOOLS ... 6

8 HTCONDOR – BASICS ... 9

8.1 The Central Manager 9

8.2 Execute Nodes 10

8.3 Submit Nodes 10

8.4 HTCondor Daemons 10

9 HTCONDOR – SETTING UP ... 11

9.1 Pre-requisites 11

9.2 Preparation 11

9.3 Setting Up A Test Pool 12
9.3.1 Prepare the nodes for condor installation 12
9.3.2 Install HTCondor on both machines 12
9.3.3 Configure the HTCondor Installation 13
9.3.4 Start HTCondor 15

9.4 Installing and Configuring Bladed 15

9.5 Creating a shared file system 18

9.6 Creating Sample Runs 19

9.7 Submitting jobs to the pool 21

9.8 Scaling Up the Pool 22

10 NEXT STEPS ... 24

Page 3 of 24

 Bladed Linux Batch Processing.docx

1 BACKGROUND
The main Bladed calculation engine - dtbladed, has been available on the Linux platform from version

4.10 of Bladed. The Linux version is expected to deliver significant reduction in compute costs for high

throughput scenarios due to the relatively lower cost of Linux compute nodes – both locally and on third

party Cloud platforms. However, most Bladed users have so far been unable to realise this cost reduction

due to the absence of a reliable batch processing system around Bladed for Linux. The existing batch

program for Bladed uses Windows specific technology and cannot manage simulations on the Linux

platform. However, many third-party solutions exist in this space and offer a quick route to setting up

highly parallelised Bladed workflows on Linux.

2 AIM
This document aims to provide information and instructions for setting up a batch processing system

built around the Linux version of Bladed using third-party tools. The resulting setup is expected to

require extension and further configuration before it can be production ready. This guide does not set

out to be exhaustive or definitive in how to set up a chosen third-party tool but will hopefully help lay the

foundations for a reliable and performant solution.

3 SCOPE
The target audience for this document are Bladed users/tools developers who are tasked with setting up

a high throughput compute infrastructure and are already familiar with Bladed as a tool.

Bladed is used in a wide variety of custom workflows within enterprises, so it is impractical to provide

instructions at a level of detail that will address all these scenarios. This guide will therefore focus on

aspects of batch processing that are universally applicable.

4 LIMITATIONS
Recommendations made in this guide are based on the most typical batch processing scenario for

Bladed, where the user has a custom process for generating inputs for their simulations (i.e. runs) and

uses a dedicated set of compute nodes for parallelising the simulations. Inputs and outputs are assumed

to be stored on a shared file system, accessible from all the nodes in the compute infrastructure for

reading and writing.

Out of scope: This guide does not make recommendations or provide instructions on managing data

security and implementing access control for multiple users. Instructions in the guide will produce an “all

permissive” setup which will need to be secured as per specific IT/system requirements at the users end.

5 BLADED ON LINUX

5.1 System Requirements

Operating System Linux (Ubuntu 18.04 LTS – Bionic Beaver)

Processor 2.5 GHz

SIMD Instruction Set SSE2

RAM 4 GB

Storage 2 GB, preferably SSD

Licencing A valid Bladed network licence with the

Page 4 of 24

 Bladed Linux Batch Processing.docx

“processor only” feature set

5.2 Unsupported Functionality
On Linux, only the dtbladed component is provided and therefore users cannot complete the following

tasks:

• Generation of wind files

• Post-processing of calculation results

• Generation of quake

• Pre-processing calculations

• Bladed Hardware Test Module

• Use of the Bladed GUI

Users should continue to use their Windows Bladed installations to perform these tasks. The output

produced by the Linux version of the calculation uses the same format as the Windows version, so it is

possible to seamlessly link Linux calculations with your existing Windows post-processing workflow.

6 BLADED BATCH PROCESSING

Setting up and performing large numbers of simulations is a common task in nearly all Bladed workflows.

The Bladed calculation engine is a single threaded executable that is predominantly CPU bound and

individual calculations range from a few minutes at the lower end to multiple hours at the upper end and

often produces many hundreds of megabytes of output data per calculation. The primary bottlenecks in

most Bladed workflows are therefore compute capacity, followed by data storage capacity and network

latency.

Batch processing allows users to increase throughput of workloads by spreading the runs across as many

compute nodes as possible, while still providing a consistent runtime and file storage access across all

nodes. Note that the primary goal here is not to run individual calculations as quickly as can be (i.e. low

latency), but to get the overall workload to finish the quickest (i.e. high throughput) with an acceptable

latency.

6.1 On Windows

Bladed Batch is a standalone module of Bladed that provides batch processing capability for Windows

users. It is fully integrated with the Bladed desktop application and can manage tens of compute nodes

within a local network and shared work among them. The tight integration with Bladed allows this

module to support application specific operations which would be absent in an off the shelf batch

processing solution. While the local processing capacity manageable through Bladed Batch is limited, it

provides a powerful Cloud backend for those users that need higher throughput.

This module however is limited to the Windows platform due to its reliance on Windows specific

technologies and communication protocols.

6.2 Transitioning to Linux

Transitioning from a Windows native workflow for Bladed to one where the Linux version of the

calculation is used involves introducing some significant changes. Diagram below illustrates a simplified

Bladed workflow which will form the basis for this discussion.

Page 5 of 24

 Bladed Linux Batch Processing.docx

Figure 1: Simplified Bladed Workflow

The simplified workflow above can be understood in terms of four distinct phases:

Basis
Project

Runs
Creation
Process

File System

Bladed

Batch
Or Custom
Scheduler

Runs

dtbladed

Compute Node

dtbladed

File System

Post
Processing

File System

dtbladed

Compute Node

dtbladed

Output Output

Batch Jobs

Processed
Output

Collate,
Analyse &

Report

Batch Jobs

Page 6 of 24

 Bladed Linux Batch Processing.docx

1. Preparing inputs – Creation of inputs for runs from a basis project based on some pre-defined

scheme of variation (e.g. IEC standards)

2. Performing simulations – The compute intensive operation where the previously created runs are

distributed among multiple machines with the help of a batch processing system. Results from

these simulations are written back to a shared file system.

3. Post Processing – Output from simulations are post-processed using dtsignal (the Bladed post

processing tool) or custom implementations of post processing algorithms.

4. Analysis and reporting – Collation, analysis and reporting of post processed results.

The transition under discussion relates primarily to phases 1 and 2 of this process.

6.2.1 Input Preparation for Linux

The primary input to the dtbladed calculation is a text-based input file (DTBLADED.IN) which captures

the model under test, environment conditions, operating conditions/faults and simulation configuration.

In order to run on Linux, all Windows specific entries in this file should be identified and transformed to

their Linux equivalent. In most cases, this simply involves translating Windows path structures (absolute

and relative) to paths that will resolve to a valid location on the Linux compute nodes where the

simulations will now be performed. Note that Linux also uses “/” as the directory separator character

instead of “\” which is the default separator on Windows although Windows also allows use of the “/”

character.

Common examples of such values include the “PATH” value which represent the output location for the

run, location of other inputs such as turbulent wind files, load time-histories and other ancillary files such

as external controller dll, pitch dll, external loads dll as well as parameter files for these components.

Depending on whether you would like to move all compute to Linux or retain the flexibility to mix your

compute resources, you may choose to perform this translation right at the point of input creation or just

before a run is requested. Use of shared file systems that are mounted to pre-defined target locations on

the Linux compute nodes will allow you to perform such translations for paths easily. For example, if an

input file path on Windows can be represented as X:\Project_Folder\Wind_Files\10mps_seed12.wnd, you

could mount this shared file system at /mnt/Project_Folder thereby getting a direct translation from X:\

to /mnt/. Ancillary inputs and custom dlls

In addition to translating Windows paths to their equivalent Linux paths, you will also need to convert

any custom dynamic link library (dll) that you use within your simulation to their Linux equivalent. For

example, you will typically need to recompile your external controller to a Linux shared object file (.so).

While doing this you will need to make sure that the recompilation targets the C++ 11 language

standard and runtime version libstdc++6 as supported by Bladed Linux. In most cases, this task is

expected to be straightforward assuming you have access to the source code and have some familiarity

with Linux tools for the language in which it is written. DNV GL may be able to offer guidance and some

assistance in this task. Please contact Renewables.support@dnvgl.com.

7 LINUX BATCH PROCESSING TOOLS

Most Linux operating systems come with built in tools for the user to create a crude batching system

around. Commands such as “at”, “atq”, “atrm”, “batch” and the crontab mechanism form this core of

features. However, most real-world use cases will very soon grow in scope beyond what is achievable

through these basic tools. Hence it is recommended that users looking to utilizing Linux for high

mailto:Renewables.support@dnvgl.com

Page 7 of 24

 Bladed Linux Batch Processing.docx

throughput Bladed workloads should start by looking at third party tools rather than attempting to build

their own.

There is a wide array of new and relatively old third-party systems and tools that address the question of

Batch processing on Linux. Some examples include:

- HTCondor

- Microsoft HPC Pack (Windows based, but supports Linux nodes)

- Celery

- RQ (RedisQueue)

- Dask

- Huey

Each of these tools come with their own set of unique advantages and disadvantages when applied in the

context of a Bladed workflow. However, they can be subdivided into two broad categories; tools that are

designed for parallelising compute heavy processes such as Bladed simulations and tools that are

primarily designed for generic out of band processing which can be adapted for use in the Bladed context.

For the purpose of this paper, we evaluated two tools - HTCondor and Celery, which represent these two

categories respectively; these are not recommendations or endorsements but a suitability study around

a typical Bladed use case. All 3rd party supplier summary information is provided in good faith and is not

intended to be definitive / exhaustive.

 Celery HTCondor

Primary design goal Out of band processing of compute

requests.

High Throughput Computing

(HTC) on large collections of

distributed computing resources.

System summary Central message broker with

distributed workers and a global

results store. Broker and results

store functions are provided by

commercial tools.

Collection of daemons deployed

on multiple nodes forming a

distributed network.

Owner/maintainer celeryproject.org Centre for HTC at University of

Wisconsin-Madison, USA

Platform support Cross-platform Cross-platform

Licence Celery – Open source, BSD Licence

Broker/Results Store – Licence

based on choice of component

Open source, Apache Licence

Version 2.0

HTCondor Licence Notes

In active dev? Yes Yes

Paid support No Yes

Primary Languages Python C++, Python

https://opensource.org/licenses/BSD-3-Clause
https://research.cs.wisc.edu/htcondor/license.html

Page 8 of 24

 Bladed Linux Batch Processing.docx

Primary interface Command line (python terminal) Command line

Graphical user interface Available through the “Flower”

add-on.

CondorGUI and JCondor – both

from third parties. Limited

functionality for job monitoring

and management.

Scalability No defined limit. Hard to find real-

world figures.

Extremely high. Real world

examples of 40K parallel slots.

Support for hybrid pools

(mixing hardware, on-

prem and in Cloud)

Yes Yes

Variants None HTCondor – multi-user

MiniCondor – single node

installation for one user

Can be containerised Yes Yes

Security and user

management

Patchy Robust and fine grained

API present Yes (Web) Yes (Web)

Cycle scavenging support No Yes

Task chaining Yes – Group, chain and chord Yes – support for Directed Acyclic

Graph (DAG) based task chaining

Input/output file

management

No Yes

Checkpointing and

migration of jobs

No Yes (Not applicable to dtbladed

calculations although some post

processing calcs may benefit)

In our experience of the tools, while Celery is easier to get started with, the learning curve gets

drastically steeper as you attempt to tackle real world use cases for Bladed. HTCondor, on the other

hand, can seem harder to get going with, but impresses with its rich set of functionality and reliable

performance.

Having performed a detailed comparison and having set up sample clusters using both candidate

technologies, we have concluded that HTCondor better fits the typical usage context around Bladed. It is

a very mature product with a proven track record and a highly refined set of functionalities geared

towards distributed scientific computing. However, we would strongly urge users to perform their own

analysis and requirement matching before embarking on their Linux batch processing journey.

Page 9 of 24

 Bladed Linux Batch Processing.docx

8 HTCONDOR – BASICS

The core of the HTCondor system design can be represented as below:

Figure 2: HTCondor System

The system is composed of services that provide functionality that could be grouped into one of three

node types - submit, execute and central manager. Submit nodes queue up the jobs for execute nodes

to perform and the central manager orchestrates the process. Jobs are submitted with a definition of

requirement that should be met by an execute node that can run them. Execute nodes on the other hand

define the resources and capabilities they have on offer. A match-making algorithm that has view of both

jobs and available resources then tries to find an appropriate slot for each submitted job.

8.1 The Central Manager

There can be only one central manager in a pool. The central manager is the collector of information and

negotiator between resources and resource requests. The central manager is the most crucial node in

the pool and needs to be reliable and have good network connectivity with all other nodes in the pool.

Submit

Central
Manager

Execute

Page 10 of 24

 Bladed Linux Batch Processing.docx

8.2 Execute Nodes

Any machine in the pool (including the central manager) can be configured to execute Condor jobs.

Execute machines provide the runtime resources for the job (CPU, memory, disk and other runtime

dependencies).

8.3 Submit Nodes

Any machine in the pool (including the central manager) can be configured to submit Condor jobs. The

resource requirements for a submit machine are much greater than an individual execute node if

submitting large number of jobs.

8.4 HTCondor Daemons

The system is geared to provide reliability at high loads while not sacrificing performance. Each of the

backing services that run on the nodes are implemented as separate processes, with their own

responsibility, fault tolerance and failure semantics as well as clean up mechanism. The list below

elaborates on the functions of the more prominent among these (for a complete list of daemons, see the

HTCondor Administration Manual):

condor_master: Responsible for keeping all the rest of the HTCondor daemons running on each

machine in the pool. Spawns all other daemons on the machine and periodically checks them and

respawns them if any has crashed. Also supports administrative commands to start, stop or reconfigure

daemons remotely.

condor_startd: This daemon represents a given resource to the HTCondor pool, as a machine capable

of running jobs. It advertises certain attributes about machine that are used to match it with pending

resource requests. The condor_startd will run on any machine in the pool that is to be able to execute

jobs.

condor_starter: This daemon is the entity that spawns the HTCondor job on a given machine. It sets

up the execution environment and monitors the job once it is running. When a job completes,

the condor_starter notices this, sends back any status information to the submitting machine, and exits.

condor_schedd: This daemon represents resource requests to the HTCondor pool. Any machine that is

to be a submit machine needs to have a condor_schedd running. When users submit jobs, the jobs go to

the condor_schedd, where they are stored in the job queue. The condor_schedd manages the job queue.

Various tools to view and manipulate the job queue, such as condor_submit, condor_q, and condor_rm,

all must connect to the condor_schedd to do their work. If the condor_schedd is not running on a given

machine, none of these commands will work.

condor_shadow: This daemon runs on the machine where a given request was submitted and acts as

the resource manager for the request.

condor_collector: This daemon is responsible for collecting all the information about the status of an

HTCondor pool. All other daemons periodically send ClassAd updates to the condor_collector. These

ClassAds contain all the information about the state of the daemons, the resources they represent or

resource requests in the pool. The condor_status command can be used to query the condor_collector

for specific information about various parts of HTCondor. In addition, the HTCondor daemons themselves

query the condor_collector for important information, such as what address to use for sending

commands to a remote machine.

https://htcondor.readthedocs.io/en/latest/admin-manual/introduction-admin-manual.html#the-htcondor-daemons

Page 11 of 24

 Bladed Linux Batch Processing.docx

condor_negotiator: This daemon is responsible for all the match making within the HTCondor system.

Periodically, the condor_negotiator begins a negotiation cycle, where it queries the condor_collector for

the current state of all the resources in the pool. It contacts each condor_schedd that has waiting

resource requests in priority order and tries to match available resources with those requests. The

condor_negotiator is responsible for enforcing user priorities in the system, where the more resources a

given user has claimed, the less priority they must acquire more resources.

9 HTCONDOR – SETTING UP

9.1 Pre-requisites

The setup instructions below assume the following prerequisites:

a. User has admin access to a network with at least two Linux machines running Ubuntu 18.04 LTS

operating system

b. The machines being configured have access to the internet (to download and install required

packages)

c. User has access to the Bladed Linux install package

d. User has access to a valid Bladed licence for Linux (this will need to be a networked processor

only licence) and that the Linux network being configured to run jobs can access the said licence

server

e. User has familiarity with the following tools and technologies

a. An ssh client

b. A remote file copy tool (such as scp)

c. The Linux terminal and basic commands (the OS we are using does not come with a desktop

or graphical tools)

d. A Linux text editor (all commands in this guide use "vi" - one of the built-in text editors, but

user may replace it with their preferred option)

e. Basic understanding of networking concepts (CIDR blocks, firewalls, domain names)

f. Basic file system concepts (volumes, mounting, file system types)

Note: User may choose to install a desktop (or an X Window or xrdp service) on their worker nodes.

However, it is not recommended that they do this because most worker nodes in the pool are typically

not directly accessed by users and it would be wasteful to bloat them with such services. If you would

like to have more user-friendly way to monitor a pool, a way to achieve this would be to set up a single

node which is part of the same pool but setup as a Submit only node but has graphical tools installed. It

is also possible to have a Windows machine perform this function.

9.2 Preparation

Create/identify the shared storage space which you will be using to hold Bladed input and output. This

could be any networked file store, as long as all nodes in your pool can access it for read and write.

Identify a valid Bladed licence for Linux runs and make sure that both test machines can reach it.

Page 12 of 24

 Bladed Linux Batch Processing.docx

9.3 Setting Up A Test Pool

AIM: Set up two machines, one which will act as the "Central Manager" (CM). The other will perform

both "Submit" and "Execute" roles

Note: Both nodes will need a series of common setup steps to be followed. Steps below are ordered in

the way in which they must be performed. Unless specifically mentioned, perform the steps in the order

they appear below on both machines. All instructions in the guide were written with HTCondor version

8.8.9 and Ubuntu 18.04.4 LTS (Bionic Beaver).

Start the two new machines (based on Ubuntu 18.04). Once started, identify one machine which you

wish to make the central manager and the other you wish to configure as submit/execute node. Note

down the Fully Qualified Domain Names (FQDN) of both nodes.

9.3.1 Prepare the nodes for condor installation

Perform an update and upgrade

$ sudo apt-get update && sudo apt-get upgrade

Enable password authentication and set password for ubuntu (this is purely to make it easier to work

with the nodes). This is not a HTCondor specific requirement and need not be performed. If not

performing this, you can skip to the Install HTCondor step.

Edit sshd config and turn on PasswordAuthentication

$ sudo vi /etc/ssh/sshd_config

Restart the SSH service for the change to take effect

$ sudo service ssh restart

Set a password for user ubuntu

$ sudo passwd ubuntu

Note: If you are performing these tests using instances on a Cloud platform, it is possible that you may

need to explicitly allow password changes to persist beyond machine lifecycle events such as machine

re-imaging. To do this on the AWS platform, editing cloud config file

$ sudo vi /etc/cloud/cloud.cfg

Change the line "lock_passwd: True" under the default_user section to "lock_passwd: False"

9.3.2 Install HTCondor on both machines

Install the HTCondor repository key

$ wget -qO - https://research.cs.wisc.edu/htcondor/ubuntu/HTCondor-Release.gpg.key | sudo apt-key

add -

Add the HTCondor repositories to the source listing

$ echo "deb http://research.cs.wisc.edu/htcondor/ubuntu/8.8/bionic bionic contrib" | sudo tee -a

/etc/apt/sources.list

$ echo "deb-src http://research.cs.wisc.edu/htcondor/ubuntu/8.8/bionic bionic contrib" | sudo tee -a

/etc/apt/sources.list

https://research.cs.wisc.edu/htcondor/ubuntu/HTCondor-Release.gpg.key
http://research.cs.wisc.edu/htcondor/ubuntu/8.8/bionic
http://research.cs.wisc.edu/htcondor/ubuntu/8.9/bionic

Page 13 of 24

 Bladed Linux Batch Processing.docx

Install HTCondor

$ sudo apt-get update

$ sudo apt-get install htcondor

Note: If you get an option here to run in an assisted mode where HTCondor will attempt to configure

the installation based on answers you provide to a series of prompts. Choose "No" to proceed with a

default install which can then be configured as explained below.

Add a firewall rule to allow HTCodor traffic

$ sudo ufw allow 9618/tcp

Note: The HTCondor system relies on reliable and timely communication between the nodes that

constitutes the cluster. If firewall or other Network ACL rules disallow such traffic, the system would fail

to function normally. Signs of such issues include daemons failing to detect members in the pool or being

stopped altogether.

Enable HTCondor:

$ sudo systemctl enable condor

9.3.3 Configure the HTCondor Installation

On both nodes

Set address of the Central Manager node

$ echo "CONDOR_HOST = <FQDN for the central manager>" | sudo tee -a /etc/condor/config.d/49-

common

Setup security settings. Open a file as below and add the content shown into the file.

$ sudo vi /etc/condor/config.d/50-security

SEC_DEFAULT_ENCRYPTION = OPTIONAL

SEC_DEFAULT_INTEGRITY = OPTIONAL

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD

SEC_DAEMON_AUTHENTICATION = OPTIONAL

SEC_DAEMON_INTEGRITY = OPTIONAL

SEC_DAEMON_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI

SEC_NEGOTIATOR_AUTHENTICATION = OPTIONAL

SEC_NEGOTIATOR_INTEGRITY = OPTIONAL

SEC_NEGOTIATOR_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI

SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI

ALLOW_READ = *

ALLOW_WRITE = *

Page 14 of 24

 Bladed Linux Batch Processing.docx

ALLOW_ADMINISTRATOR = *

ALLOW_NEGOTIATOR = *

ALLOW_DAEMON = *

ALLOW_COLLECTOR = *

Set filesystem domain and user domain values. Open the local config file as below and add the content

shown

$ sudo vi /etc/condor/condor_config.local

FILESYSTEM_DOMAIN = my_shared_filesystem

UID_DOMAIN = <your domain name>

NO_DNS = True

DEFAULT_DOMAIN_NAME = <your domain name>

Note: FILESYSTEM_DOMAIN can take an arbitrary string as its value. But, make sure that you specify

the same value on all nodes in the pool for them to be able to share jobs from a single shared file

system. If the values do not match, jobs may be rejected as not matching their ClassAd requirements.

On central manager node only

Set role

$ echo "use ROLE: CentralManager" | sudo tee -a /etc/condor/config.d/51-role-cm

Set allow-write permissions

$ echo "ALLOW_WRITE_COLLECTOR=\$(ALLOW_WRITE) <SUBMIT AND EXEC NODE FQDNs>" | sudo

tee -a /etc/condor/config.d/51-role-cm

Note: In the above command you can use a * to capture more than one FQDN e.g. ip-10-0-0-*.eu-

west-1.compute.internal will allow all machines in the subnet with CIDR 10.0.0.0/24

Disable the STARTD daemon to avoid the central manager running jobs

$ sudo vi /etc/condor/condor_config

Locate the line that says "DAEMON_LIST = COLLECTOR, MASTER, NEGOTIATOR, SCHEDD, STARTD" and

remove the ", STARTD" entry from the end of the line. This will stop the STARTD daemon from spinning

up on the central manager, which will avoid jobs executing on the central manager. If this entry is not

found, create an entry “DAEMON_LIST = COLLECTOR, MASTER, NEGOTIATOR, SCHEDD” as a new line at

the end of the file.

Note: It is possible to keep running jobs on the central manager, but it will then require the user to

make sure that versions of Bladed Linux that are used are also installed on the central manager, as well

as the shared file system is mounted on to the central manager. This guide assumes that the central

manager will not perform job execution.

On submit/exec node only

$ echo "use ROLE: Submit,Execute" | sudo tee -a /etc/condor/config.d/51-role-submit-exec

Page 15 of 24

 Bladed Linux Batch Processing.docx

9.3.4 Start HTCondor

On All nodes

$ sudo systemctl start condor

Check that it is running

$ sudo systemctl status condor

Test basic HTCondor commands

See the status of the queue

$ condor_q

Sample output from the command:

Check status of slots and nodes

$ condor_status

Sample output from the command:

9.4 Installing and Configuring Bladed

Preparation:

Copy the Bladed Linux installer package (e.g. dtbladedlinux-4.10.0.21.deb) on to the submit/exec node

Install dtbladed

$ sudo dpkg -i dtbladedlinux-4.10.0.21.deb

Note: The Bladed install will prompt users to perform installation of the Sentinel runtime environment.

Follow instructions provided by the Bladed install to perform this step which completes the Bladed

installation on the machine.

Start the Sentinel runtime service

$ sudo service aksusbd start

Verify the runtime installation

$ sudo service aksusbd status

Page 16 of 24

 Bladed Linux Batch Processing.docx

Sample output:

Verify dtbladed installation

$ dtbladed-4.10.0.21

Expected output at this stage:

Point the licence local runtime to point to a valid licence server. To do this, create a config file for the

runtime and populate it with below content. Note: You will need to update the serveraddr attribute's

value in the content below based on the actual licence server you are going to use within your

environment.

$ sudo vi /etc/hasplm/hasplm.ini

;***

;*

;* Sentinel License Manager configuration file

;*

;* Version 20.0 1.70826 at bladed-linux-gw

;* Tue, 20 Aug 2019 10:31:28 GMT

;*

;***

[SERVER]

name = bladed-linux

pagerefresh = 3

linesperpage = 20

ACCremote = 0

enablehaspc2v = 0

old_files_delete_days = 90

enabledetach = 0

Page 17 of 24

 Bladed Linux Batch Processing.docx

reservedseats = 0

reservedpercent = 0

detachmaxdays = 14

commuter_delete_days = 7

disable_um = 0

requestlog = 0

loglocal = 0

logremote = 0

logadmin = 0

errorlog = 0

rotatelogs = 0

access_log_maxsize = 0 ;kB

error_log_maxsize = 0 ;kB

zip_logs_days = 0

delete_logs_days = 0

pidfile = 0

passacc = 0

accessfromremote = 0

accesstoremote = 1

bind_local_only = 0 ; 0=all adapters, 1=localhost only

[UPDATE]

download_url = www.safenet-inc.com/hasp/language_packs/end-user

update_host = www3.safenet-inc.com

language_url = /hasp/language_packs/end-user/

[REMOTE]

broadcastsearch = 0

aggressive = 0

serversearchinterval = 30

http://www.safenet-inc.com/hasp/language_packs/end-user

Page 18 of 24

 Bladed Linux Batch Processing.docx

serveraddr = <Enter server IP address/hostname here>

[ACCESS]

[USERS]

[VENDORS]

[EMS]

emsurl = http://localhost:8080

emsurl = http://127.0.0.1:8080

[LOGPARAMETERS]

text = {timestamp} {clientaddr}:{clientport} {clientid} {method} {url} {function}({functionparams})

result({statuscode}){newline}

Tip: If you get multiple tab characters when copying in content from this page, you will need to replace

them. If you are using the "vi" editor as shown in the example, you can do that by running the vi replace

command %s/\t\t//g. You can get the “vi” command prompt by pressing the ":" key when in

command mode (not in insert mode).

Note: Once you have added this config, it can take up to a couple of minutes for the local Sentinel

Runtime to detect the key from the server.

Verify that the licence server was found by running dtbladed again

$ dtbladed-4.10.0.21

Expected output at this stage:

9.5 Creating a shared file system

Note: This is a step that is very much dependent on the local setup within which the user is operating. It

is recommended that the user gets help from local IT or sysadmin to identify the best approach for

having a shared file system across the nodes in the HTCondor pool if they don’t already have a

mechanism in place.

For purposes of illustration, steps below show how an EFS volume (Amazon Elastic Filesystem) could be

mounted onto a Submit/Exec node. These steps are unlikely to be applicable to most user scenarios,

however, the basic workflow wold be the same. Also note that

Create an EFS volume in AWS (see https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-

resources.html for detailed instructions). Note that EFS volumes are associated with a VPC, so make

sure to associate it with the VPC which hosts the subnet where the HTCondor pool will reside. You will

need the fully qualified name of this volume later to mount it.

http://localhost:8080/
http://127.0.0.1:8080/
https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html
https://docs.aws.amazon.com/efs/latest/ug/gs-step-two-create-efs-resources.html

Page 19 of 24

 Bladed Linux Batch Processing.docx

Create a mount point on your HTCondor Submit/Execute node

$ sudo mkdir /mnt/efs/

Install packages to provide support of EFS volume mounts using NFS4

$ sudo apt-get install nfs-common

Edit the fstab to add mount instructions

$ echo "fs-90916d5a.efs.eu-west-1.amazonaws.com:/ /mnt/efs nfs4

nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2 0 0" | sudo tee -a /etc/fstab

Mount the shared file system

$ sudo mount -a

Create a folder hold test bladed runs within the shared folder

$ cd /mnt/efs && sudo mkdir bladed_data && sudo chown ubuntu:ubuntu bladed_data

$ mkdir bladed_data/Runs

9.6 Creating Sample Runs

Now that we have a simple HTCondor pool, working dtbladed installation and a shared file system to host

the runs, the next task is to create some test runs and to validate the setup.

Note: Steps below assume a shared folder at /mnt/efs/bladed_data/Runs. If your file system layout is

different, please amend the paths used in following commands before you run them.

A runs creator utility can be downloaded from the software portal here. This utility will help you quickly

create some test runs to verify your setup. Note that you will need to login to the portal for the

download link to function.

Download and copy the supplied "sample_runs_creator.tar.gz" file to the /mnt/efs/bladed_data/Runs

folder on the submit/exec node. Once copy is complete, unpack the archive to get files that we will use

to create some sample runs.

$ cd /mnt/efs/bladed_data/Runs && tar -xzvf sample_runs_creator.tar.gz

This will unpack the archive into the current folder. See table below for folders/files in the package and

their role.

 Type Description

base-run/ Folder Folder containing a template DTBLADED.IN and submit

description files.

base-run/DTBLADED.IN File This file is based on the Bladed demo project, but with the

difference that it uses a constant wind of 12 m/s. The

RUNNAME and PATH variables in the “.IN” file contain tokens

which can replaced with appropriate values by a script to

create a set of new runs which can be used to experiment

http://renewableenergysoftwareportal.dnvgl.com/TemporaryDownload/Download/9fa8569d-dbfd-41a4-88f8-8d9ddc63df85

Page 20 of 24

 Bladed Linux Batch Processing.docx

with your HTCondor pool.

base-run/runs.sub Submit

description

file

A HTCondor submit request file that specifies how to run the

sample jobs. The file encapsulates details including the

executable to invoke, the way to run it, the environment

around it etc. See

https://htcondor.readthedocs.io/en/latest/man-

pages/condor_submit.html?highlight=submit%20file#submit-

description-file-commands for a complete definition of what

can be defined through this file.

This file is used as a template just the same way the

DTBLADED.IN

Note: The supplied runs.sub file uses Bladed 4.10.0.21 by

default. If you would like to test with a different version of

Bladed, please update the “executable” parameter value in

this file to make your jobs use the version you would like to

test with.

utils/ Folder Folder with utility scripts to generate actual runs and submit

descriptions based on template files in base-run folder

utils/createABladedRun.sh Executable

shell script

A script to create a single named run based on the template

DTBLADED.IN file in base-run. Name of the run to be passed

in as an argument.

utils/createSubmitDescription.sh Executable

shell script

Create a submit description file based on the template

“runs.sub” file in base-run folder. Takes two arguments, a

base run name and total number of jobs to queue.

create_runs.py Python

script

A simple python program that wraps the utility scripts to

create a fixed number of runs and a submit description for it.

To be invoked with two arguments: first, the total number of

jobs to create and second, a base name to use for the

individual runs.

E.g. the following command creates 2 sample runs (foo-0

and foo-1) in the current directory based on the base-run

definition.

$ python create_runs.py 2 foo

In addition, the script will also produce a submit description

file named "foo.sub" which can be used to submit the runs to

the condor pool.

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html?highlight=submit%20file#submit-description-file-commands
https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html?highlight=submit%20file#submit-description-file-commands
https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html?highlight=submit%20file#submit-description-file-commands

Page 21 of 24

 Bladed Linux Batch Processing.docx

Create two sample runs to test HTCondor with

$ python create_runs.py 2 foo

Check that this command has produced two folders in the current working directory named "foo-0" and

"foo-1" as well as a submit file named "foo.sub". Within each run folder you should fine a DTBLADED.IN

file as well as a "results" folder

9.7 Submitting jobs to the pool

Now that we have the sample runs, we can request HTCondor to run them. To submit the jobs, run the

following command

$ condor_submit foo.sub

Check the status of the jobs you submitted

$ condor_q

Expected output for a single exec node with 1 CPU

Note that one job has transitioned to the "Running" stage while 1 is "Idling". This is because, the node

used in the test setup was a single CPU machine, which in HTCondor terms only provide a single job

processing slot, which translates to a default concurrency of 1. If you have used a machine with > 1 core,

then you may find at this stage that both jobs transition to the "Running" stage simultaneously. Wait for

about 40 seconds (for first job to finish) and run the "condor_q" command again. This time you should

see that 1 job has moved to the "Done" column and the previously idling job is now "Running".

Verify the results from the run. Within each run (e.g. "run-0") you should see the following files.

 Type Description

<runname>.$PR Bladed progress file Produced by dtbladed. Shows the simulation's

progress as a percentage

<runname>.$ME Bladed message file Produced by dtbladed. Contains all messages

produced by the simulation

<runname>.$TE Bladed termination

file

Produced by dtbladed. Contains the termination

status (Success/Error)

E.g. "Run completed successfully", "Run completed

Page 22 of 24

 Bladed Linux Batch Processing.docx

Check

the

content

s of

some of

the files

to make sure they represent a successful run. For example, the $PR file should contain the value "100"

and the out.txt file should show data including the dtbladed "banner" that is typically printed out to the

console.

9.8 Scaling Up the Pool

Now that you have a functioning HTCondor pool, it is time to replicate the submit/exec node setup to

multiple computers (real or virtual) to increase the size of the pool. The exact steps for performing this

task depends on the platform being used. Note that since only submit/exec nodes perform the actual

calculations, it is only necessary to replicate them (and not the central manager).

(with 2 warning"), "Run terminated

 ERROR: <error_message>"

out.txt Output Produced by HTCondor. Contains all messages

written to the standard output stream by the

simulation. This will also include any messages

printed out to stdout stream by user components

(such as external controllers or other dynamically

loaded modules)

error.txt Output Produced by HTCondor. Contains all messages

written to the standard error stream by the

simulation or user components.

<runname>.log HTCondor log for

the run

Produced by HTCondor. Contents include

Submission details (time, source of submission)

Execution details (time, execution location)

Program termination details (CPU time, return

code)

Resource usage stats (CPU, Memory, Disk)

results\ Folder This folder would contain the results from the run.

Note that the location of the results folder is

entirely dependent on the PATH variable specified

by the input file (DTBLADED.IN). The sample jobs

created as part of this guide use a "results" folder

within each run.

This folder should contain bladed output files for

the run (which appear as % and $ file pairs, with

each % file representing a unique output group

and the corresponding $ file representing the data

for that group).

Page 23 of 24

 Bladed Linux Batch Processing.docx

For a virtualized setup (such as for example, a set up using a Cloud platform), you could save the

current Submit/Exec node's state as a new machine image and start up the required number of worker

nodes based on the new image. All new nodes should automatically connect to the existing central

manager and be ready to pick up jobs or to submit jobs. The fstab entry made in the setup process will

also ensure that the necessary file system access is available on nodes replicated in this way.

Once you have increased the HTCondor pool size in this manner, check the status of the pool by running

the condor_status command from an ssh session connected to any of the machines in the pool (either

from any of the Submit/Exec nodes or from the Central Manager). Output from the command should

give you an up to date view of the pool and the available processing slots including their current status.

Image below shows the output from the condor_status command for a pool with 11 processing slots

spread across 7 machines (4 nodes with 2 CPUs and 3 nodes with a single CPU each). Nodes with

multiple CPUs are listed as slot<n>@hostname whereas single processor machines are identified simply

by their hostname.

Having increased the pool size, use the sample runs creation scripts to produce a larger batch of jobs

(say 100 jobs) and submit it to the pool. Observe the status of the pool and the queue using the

commands condor_q and condor_status.

For example, to create 100 jobs using the script, go to the location where you unpacked the sample runs

creator in the step "Create sample runs".

$ python create_runs.py 100 scaled-batch-1

$ condor_submit scaled-batch-1.sub

$ condor_q

$ condor_status

You can repeat the last two commands to see the jobs moving through their states from "Idle" to

"Running" to "Done".

You may also create a second batch at the same time as the first one is processing and submit it.

$ python create_runs.py 100 scaled-batch-2

$ condor_submit scaled-batch-2.sub

Page 24 of 24

 Bladed Linux Batch Processing.docx

$ condor_q

Note that you should now be able to see status for both batches as separate entries in the output

10 NEXT STEPS

As indicated in the Scope and Limitations sections of this guide, certain topics relating to the setup and

configuration of an HTCondor cluster are not dealt with in detail in this guide. For instance, to provide an

easier start to the process, the guide uses an all permissive security model and does not address the

issue of multi-user access management. The setup you have performed by following this guide is best

treated as a proof of concept, allowing you to understand the moving parts of the system and to gain an

understanding of how your existing workflow may need reshaping in order to fit with the batch

processing mechanism. Once it becomes apparent how you would like your production environment to

be, you should consider performing a fresh setup with additional configuration as needed.

HTCondor is a complex product which satisfies many usage scenarios. It is therefore highly

recommended that users of this guide who have made the decision to incorporate it into their production

workflow spend more time familiarising themselves with the product.

See resources below for further help on setting up and configuring HTCondor:

Installation (for various platforms):
https://agenda.hep.wisc.edu/event/1325/session/16/contribution/41/material/slides/0.pdf

Latest User Manual:
https://htcondor.readthedocs.io/en/latest/users-manual/index.html

Admin Basics (and rules of thumb):
https://indico.cern.ch/event/467075/contributions/1143813/attachments/1236271/1815391/Admin_Basi
cs_Condor_Week_Barcelona_2016.pdf

Admin Tutorial:
https://research.cs.wisc.edu/htcondor/CondorWeek2009/condor_presentations/admin_tutorial/

https://agenda.hep.wisc.edu/event/1325/session/16/contribution/41/material/slides/0.pdf
https://htcondor.readthedocs.io/en/latest/users-manual/index.html
https://indico.cern.ch/event/467075/contributions/1143813/attachments/1236271/1815391/Admin_Basics_Condor_Week_Barcelona_2016.pdf
https://indico.cern.ch/event/467075/contributions/1143813/attachments/1236271/1815391/Admin_Basics_Condor_Week_Barcelona_2016.pdf
https://research.cs.wisc.edu/htcondor/CondorWeek2009/condor_presentations/admin_tutorial/

