

Bladed user-defined controllers in versions prior to
version 4.4

In Bladed version 4.4 the interface method to a user defined external controller was
changed from the “swap” array to a function based interface. This document describes
the old “swap” array interface.

The user-defined controller may be written in any language, either as a DOS or
Windows executable program (.exe) capable of reading and writing to shared files, or as
a 32-bit DLL (dynamic link library). A DLL is preferable as it will result in faster
simulations, and communication with Bladed may be more reliable.

The user-defined controller is ignored in the case of Hardware Test simulations.

Writing a user-defined controller as an executable program

If the controller is written as an executable, it will use a shared file for two-way
communication with Bladed. When the simulation starts up, the controller executable
(.exe) file is first copied into the directory where Bladed is installed, and renamed
discon.exe. When discon.exe starts up, the Bladed directory is the current directory,
and the files used to communicate between the simulation and the controller are in this
directory. The controller program can therefore refer to these files by name without
giving the full path.

Two files are used to communicate between the user-defined controller program and
the simulation. One of these is a text file named discon.aux, which is written by the
simulation and just contains the directory and run name for the simulation results. This
may be useful if the controller wishes to write any permanent record of what it does to
be stored with the simulation results. The file has just two lines: the first consists of the
word PATH followed by a space and then the path for the simulation results (including
the final backslash). The second line consists of the word RUNNAME followed by a
space and then the run name, i.e. up to 8 characters. The controller may choose to
ignore this file if the information is not required.

The second file is used for the dynamic information exchange between the two
programs. It is called discon.swp, and is a binary file with a record length of 4 bytes.
The file must be opened
as a shared file, allowing simultaneous read and write access to both programs. The file
structure is given in Appendix A.

Although this file has many records, it may only be necessary for the external controller
to read from and write to a small number of these, depending on the turbine type and
the tasks which the external controller is performing.

Handshaking: record 1 of discon.swp is used for handshaking, to ensure that neither
program starts reading data until the other program has finished writing it. The
sequence of events to be followed by the controller program is as follows:

1. Controller program starts by creating discon.swp and writing a zero to record 1.
2. Controller program waits until record 1 becomes 1 or -1. If it is 1, this indicates that

the simulation has finished writing data, and also that the file discon.aux is ready if
required. If it is -1, the simulation is about to finish and the controller program
should stop.

3. If the first record is 1, the controller may read any of the parameters written by the
simulation, perform its calculations, and then write the appropriate outputs. Once
all data is written, the controller writes a zero to record 1 to tell the simulation that
it is ready. If the controller decides to abort the simulation, it should write -1 to
record 1, and write an appropriate message to discon.swp as described in Appendix
A.

4. Controller returns to step 2.

In step 2, the controller waits until record 1 becomes non-zero. It is important that the
controller closes and re-opens discon.swp every time around the loop, otherwise the
contents of the file as represented in the disk cache may not have been updated.

Writing a user-defined controller as a dynamic link library

A dynamic link library provides faster and more reliable communications between the
controller and the Bladed simulation, and is recommended. The interface to Bladed is
also simpler to write.

When the simulation starts up, the controller DLL file is loaded into memory from the
path supplied by the user in Supervisory Control. In Bladed v3.82 and earlier, the
controller DLL file is first copied into a temporary subfolder of the directory where
Bladed is installed (known as the “run folder”) and renamed discon.dll. In all versions
of Bladed the run folder is the working directory while the simulation is running, but
contains discon.dll only in Bladed v3.82 and earlier.

The controller is written as a subroutine or procedure. The DLL export name of the
procedure must evaluate to DISCON (note: this name must be in upper case).
Depending on the language system being used, it may be necessary to define this by
means of an alias. The procedure does not generate a return value. It has five
arguments, as follows (the names given here are arbitrary, and are given purely for ease
of reference within this manual. Only the order is important):

“DATA” The address of the first record of an array of single-precision (4-byte) real

numbers which is used for data exchange between the simulation and the
controller. The contents of the array is given in Appendix A.

“FLAG” A 4-byte integer (passed by reference) which the DLL should set as
follows:
 0 if the DLL call was successful
 >0 if the DLL call was successful but the “MESSAGE” should be issued as a

 warning message. The simulation will continue.
 <0 if the DLL call was unsuccessful or for any other reason the simulation

is to be stopped at this point. “MESSAGE” is then issued as an error
message.

“INFILE” The address of the first record of an array of 1-byte characters giving the

name of the parameter file, which is currently DISCON.IN (See section
5.9.3). This array should not be modified by the DLL. The number of
characters in the name is given in “DATA” - see Appendix A.

“OUTNAME” The address of the first record of an array of 1-byte characters giving the

simulation run name, prefixed by the full path to the directory which will
contain the simulation results. This may be useful if the controller wishes
to write a permanent record of what it does to be stored with the
simulation results: the results should be stored in a file whose name
(including path) is generated by appending “.xxx” to “OUTNAME”, where
xxx is any suitable file extension not beginning with “%”. The number of
characters in the name is given in “DATA” - see Appendix A. Alternatively,
or in addition, the DLL may send information back to Bladed for output in
the same form as the other simulation results. This is described in
Appendix A.

“MESSAGE” The address of the first record of an array of 1-byte characters which may

be used by the DLL to send a text message to Bladed, which appears on
the screen and is stored together with any other calculation messages
generated by Bladed.

Communication Between Bladed And External Controllers

The following describes in detail the communication between Bladed and the user’s
external controller code.

Data exchange records

External controllers compiled as executable (.EXE) files exchange information with the
Bladed simulation through a shared binary file consisting of a number of 4-byte records.
External controllers compiled as DLLs exchange information through an array passed as
the first argument to the DLL. The structure of the binary file used for EXEs and the
array used for DLLs is similar and is described in the tables which follow. The type of
each record of the file or element of the array may be integer, real or character, as
specified in the tables. In the EXE case, the 4-byte records in the file should be written
to and/or read in as 4-byte integers, 4-byte (single precision) real (i.e. floating point)
numbers, or groups of 4 characters as appropriate. In the DLL case, all the array
elements are passed as real numbers, so if an element is described as type Integer, the
real number must be converted to the nearest integer (and integers being sent back to
the simulation must be converted to real values). Character variables are passed in
separate arrays in the DLL case.

Table 1 shows the array elements or binary file records which are used for data
exchange between the Bladed simulation and the external controller. As shown by the
‘Data flow’ column, some records are used to pass information from the simulation to
the controller, some are used to pass information from the controller back to the
simulation, and a few are used for two-way communication.

Note that the first binary file record or array element is referred to as record or element
number 1 (not 0).

Table 1

Record
number

Data
flow8

Data
type

9

Description

See
note(

s)

Units

1 in I See Section A.2 -
2 in R Current time s
3 in R Communication interval s
4 in R Blade 1 pitch angle rad
5 in R Below-rated pitch angle set-point 1 rad
6 in R Minimum pitch angle 1 rad
7 in R Maximum pitch angle 1 rad
8 in R Minimum pitch rate (most negative value allowed) rad/s
9 in R Maximum pitch rate rad/s
10 in I 0 = pitch position actuator, 1 = pitch rate actuator -
11 in R Current demanded pitch angle rad
12 in R Current demanded pitch rate rad/s
13 in R Demanded power 2 W
14 in R Measured shaft power 3 W
15 in R Measured electrical power output W
16 in R Optimal mode gain 3,5 Nm/(rad/s)2
17 in R Minimum generator speed 3 rad/s
18 in R Optimal mode maximum speed 3 rad/s
19 in R Demanded generator speed above rated 1,3 rad/s
20 in R Measured generator speed rad/s
21 in R Measured rotor speed rad/s
22 in R Demanded generator torque above rated 3 Nm
23 in R Measured generator torque 3 Nm
24 in R Measured yaw error 4 rad
25 in I Start of below-rated torque-speed look-up table =R 3,5 Record no.
26 in I No. of points in torque-speed look-up table =N 3,5 -
27 in R Hub wind speed 4 m/s
28 in I Pitch control: 0 = collective, 1 = individual -
29 in I Yaw control: 0 = yaw rate control, 1 = yaw torque

control
 -

30-32 in R Blade 1-3 root out of plane bending moment 18 Nm
33 in R Blade 2 pitch angle rad
34 in R Blade 3 pitch angle rad
35 both I Generator contactor 10 -
36 both I Shaft brake status: 0=off, 1=Brake 1 on 19 -
37 in R Nacelle angle from North rad

38-40 out Reserved
41 out R Demanded yaw actuator torque 13,21 Nm
42 out R Demanded blade 1 individual pitch position or rate 12,14 rad or rad/s
43 out R Demanded blade 2 individual pitch position or rate 12,14 rad or rad/s
44 out R Demanded blade 3 individual pitch position or rate 12,14 rad or rad/s
45 out R Demanded pitch angle (Collective pitch) 12 rad
46 out R Demanded pitch rate (Collective pitch) 12 rad/s
47 out R Demanded generator torque Nm
48 out R Demanded nacelle yaw rate 13,21 rad/s
49 out I Message length OR -M0 15 -
49 in I Maximum no. of characters allowed in the

“MESSAGE”
6 -

50 in I No. of characters in the “INFILE” argument 6 -
....continued overleaf....

Record
number

Data
flow8

Data
type

9

Description

See
note(

s)

Units

51 in I No. of characters in the “OUTNAME” argument 6 -
52 in I DLL interface version number (reserved for future

use)
6 -

53 in R Tower top fore-aft acceleration m/s2
54 in R Tower top side to side acceleration m/s2
55 out I Pitch override 16 -
56 out I Torque override 16 -

57-59 out Reserved
60 in R Rotor azimuth angle rad
61 in I No. of blades -
62 in I Max. number of values which can be returned for

logging
7 -

63 in I Record number for start of logging output 7 -
64 in I Max. no. of characters which can be returned in

“OUTNAME”
7 -

65 out I Number of variables returned for logging 17 -
66-68 in R Reserved
69-71 in R Blade 1-3 root in plane bending moment 18 Nm

72 out R Generator start-up resistance ohm/phase
73 in R Rotating hub My (GL co-ords) 18 Nm
74 in R Rotating hub Mz (GL co-ords) 18 Nm
75 in R Fixed hub My (GL co-ords) 18 Nm
76 in R Fixed hub Mz (GL co-ords) 18 Nm
77 in R Yaw bearing My (GL co-ords) 18 Nm
78 in R Yaw bearing Mz (GL co-ords) 18 Nm
79 out I Request for loads 18 -
80 out I 1 = Variable slip current demand at position 81 11 -
81 both R Variable slip current demand 11 A
82 in R Nacelle roll acceleration 18 rad/s2
83 in R Nacelle nodding acceleration 18 rad/s2
84 in R Nacelle yaw acceleration 18 rad/s2

85-89 Reserved
90 in R Real time simulation time step s
91 in R Real rime simulation time step multiplier -
92 out R Mean wind speed increment 20 m/s
93 out R Turbulence intensity increment 20 %
94 out R Wind direction increment 20 rad

95-96 Reserved
97 in I Safety system number that has been activated -
98 out I Safety system number to activate -
99 in I Reserved
100 in I Reserved
101 in R Reserved
102 out I Yaw control flag 21 -
103 out R Yaw stiffness if record 102 = 1 or 3 21 -
104 out R Yaw damping if record 102 = 2 or 3 21 -
105 in R Reserved
106 in R Reserved
107 out R Brake torque demand 19, 22 Nm

....continued overleaf....

Record
number

Data
flow8

Data
type9

Description

See
note(

s)

Units

108 out R Yaw brake torque demand Nm

109 in R Shaft torque (= hub Mx for clockwise rotor) 18 Nm
110 in R Hub Fixed Fx 18 N
111 in R Hub Fixed Fy 18 N
112 in R Hub Fixed Fz 18 N
113 in R Network voltage disturbance factor -
114 in R Network frequency disturbance factor -

115-116 Reserved
117 in I Controller state 23 -
118 in R Settling time (time to start writing output) s
119 Reserved

120-129 both R User-defined variables 1 to 10 24
130-142 Reserved

143 in R Teeter angle rad
144 in R Teeter velocity rad/s

145-160 Reserved
161 in I Controller failure flag -
162 in R Yaw bearing angular position rad
163 in R Yaw bearing angular velocity rad/s
164 in R Yaw bearing angular acceleration rad/s2

R in R First generator speed in look-up table 3,5 rad/s
R+1 in R First generator torque in look-up table 3,5 Nm
R+2 in R Second generator speed in look-up table 3,5 rad/s
R+3 in R Second generator torque in look-up table 3,5 Nm
... etc., until

R+2N-2 in R Last generator speed in look-up table 3,5 rad/s
R+2N-1 in R Last generator torque in look-up table 3,5 Nm

M0 out I Message length, only if record 49 < 0 15
M1 - Mn out C Message text, 4 characters per record 15 -

L1
onwards

out R Variables returned for logging output 17 SI

Notes:
1. Pitch regulated case only.
2. Not for variable speed pitch regulated case.
3. Variable speed case only.
4. Based on free wind at hub position - no modelling of actual nacelle anemometer or

wind vane.
5. If the look-up table option is selected for the optimal mode below rated control,

then record 16 is zero, record 25 contains the record number (R) of the start of the
look-up table, and record 26 contains the number of points in the table (N).

6. DLL case only.
7. DLL case only.
8. in = data supplied by simulation, which may be used but not changed by the

external controller.
out = data supplied by the external controller to the simulation.
both = data which is written by the simulation but which may be changed by the
external controller.

9. Record type for EXE case. I = integer, R = real (floating point), C = character. In the
DLL case, all records are actually passed as 4-byte real (floating point) numbers.

10. 0 = off, 1 = main (high speed) or variable speed generator, 2 = low speed generator.
11. Only used with the variable slip generator electrical model. Set record 80 to 1 if

using record 81 to send a rotor current demand. If record 80 is 0 (default), then the
torque demand (record 47) will be used to control the generator.

12. See record 28.
13. See record 29.
14. Depending on record 10.
15. EXE case only.
16. See Below.
17. DLL case only.
18. Record 79 is used to request additional measured loads and accelerations to be

provided by the simulation:

Record
79

Blade loads
and

accelerations

Hub rotating
loads

Hub fixed

loads

Yaw bearing
loads

0
1 √
2 √ √
3 √ √ √
4 √ √ √ √

19. For shaft brake 1; to apply additional brakes, this is a binary flag: specify a value of
 ∑ −

i
i

1i B2

where Bi = 1 if the brake with index number i is applied, otherwise 0. The brake
index numbers are as follows:

Index number Brake description
1 Shaft brake 1
2 Shaft brake 2
3 Generator brake
4 Shaft brake 3
5 Brake torque set in record

107

20. For the Real Time Test facility, it is useful for the user to be able to change the wind
conditions manually during a simulation from code in the external controller.
Bladed will increase the mean wind speed, turbulence intensity (of all components)
and wind direction by the value set in the respective field.

21. Yaw control flag in record 102 (affects the flexible yaw model only):
0: Default (record 48 sets the yaw rate demand).
1: As 0 but change the linear yaw stiffness according to record 103 (no effect on
hydraulic accumulator model).
2: As 0 but change the yaw damping according to record 104.
3: As 1 but also change the yaw damping according to record 104.
4: Use record 41 (yaw torque demand) to override the yaw spring and damper.

22. Brake torque demand used for brake index 5 (see note 19).
23. Controller state flag is set by the Bladed internal controller as follows:
 0: Power production
 1: Parked
 2: Idling
 3: Start-up
 4: Normal stop
 5: Emergency stop
24. May be used to share information between user-defined DLLs for different turbine

components.

Table 1: Communication records

Note the strict use of SI units for all variables.

Note also that many of the parameters passed from the simulation to the controller are
constants as defined in the Control Systems window, and some are variables such as
measured signals. Some are only relevant for certain types of controllers, e.g. fixed or
variable speed, stall or pitch control, and pitch position or pitch rate actuators.
Although the record numbers are always the same, as shown in the tables above, the
user-defined controller need only make use of those parameters which it actually
requires, and only needs to output the demands which are relevant for the particular
case, e.g.:

• demanded pitch angle(s) for pitch regulated machines with pitch position actuator
• demanded pitch rate(s) for pitch regulated machines with pitch rate actuator
• demanded generator torque for variable speed machines
• demanded nacelle yaw rate if the external controller option was selected for active

yaw with yaw rate control
• demanded yaw actuator torque if yaw torque control was selected.

The controller may, if desired, change the status of the generator contactors and the
brake.

Record 1: the Status flag

In the EXE case, record 1 of the shared binary file is used for handshaking.

In the DLL case, element 1 of the “DATA” array is set by the simulation as follows:

 0 First call at time zero
 1 All subsequent timesteps
-1 Final call at the end of the simulation.
 2 Real Time update step (for Real Time Test simulations only). On a call with the

status flag set to 2, the DLL must exchange data with the turbine controller.

The DLL may set the value to –1 to request the simulation to terminate.

Sending messages to the s imulation

The controller may send a message to the simulation, which will then be displayed to
the user.

In the DLL case, a separate argument to the DLL is provided for this purpose. Element 49
of the “DATA” array gives the maximum number of characters allowed. Each 1-byte
element of the “MESSAGE” array can store one character of the message.

In the EXE case, there are two methods of specifying the message, which should not
exceed 80 characters in length:

Method 1 (obsolete): Record 49 should contain the number of characters in the
message, and the subsequent records should contain the message, four characters per
record.

Method 2 (recommended): Place the message in records M1 onwards, 4 characters per
record. Enter the number of characters in the message as an integer in record number
M0 where M0 = M1 - 1, and set record 49 to -M0 (note negative sign). Choose M0 so that
all these records occur after other output records, for example M0 = 61. In practice it
does not actually matter if any of the records in Table A.1 are overwritten since they are
refreshed each timestep.

The EXE controller must write to record 49: a zero should be written if there is no
message.

Pitch and torque override

If the external controller is used for supervisory control actions such as starts stops,
while the built-in continous-time PI controllers are used for power production control,
then it may be necessary for the external controller to specify the instant at which the
supervisory control action takes over from the in-built controller action. Set record or
element 55 to integer 0 whenever the external controller is to control the pitch,
overriding the built-in PI controller. Set it to 1 when the built-in PI controller should be
controlling the pitch.

For variable speed turbines, use record 56 in the same way to determine whether the
external or the built-in controller should be controlling the generator torque.

Note that in the EXE case, messages should be written using Method 2 if the override
control is to be used. The external controller will always take precedence if Method 1 is
used.

A.5 Sending logging output to Bladed

In the DLL case only, additional data may be sent back to Bladed for logging in
additional simulation output files in a similar format to other simulation outputs. This
data can then be viewed directly using the Data View facility, or post-processed. This is
particularly useful for debugging the controller, or for illustrating the details of its
operation.

Element 62 of the “DATA” array gives the maximum number of logging outputs which
can be returned. On the first call, the DLL should set element 65 to the number of
logging outputs which will be returned, and their values should be returned starting at
the element whose number is given by the value of element 63.

The “OUTNAME” array can be used to specify the names and units for the logging
outputs. This should be set on at least the first and last calls to the DLL (overwriting the
existing information in that array). This array should be set to a sequence of characters
as follows:

Name:Units;

repeated for each logging output. Name is a description of the logging output, and
Units should be one of table 2, provided the logging output is presented in strict SI units.

See below for an example in ‘C’.

Allowed values for

Meaning (strict SI)
- (No units specified)

1/T s-1 (Hz)
A rad

A/P rad/W
A/PT rad/Ws
A/PTT rad/Ws²
A/T rad/s

A/TT rad/s²
F N

F/L N/m
F/LL N/m²
FL Nm

FL/A Nm/rad
FL/L Nm/m
FLL Nm²

FLT/A Nms/rad
FLTT/AA Nms²/rad²

I A
L m

L/T m/s
L/TT m/s²
LLL m³

LLL/A m³/rad
M kg

M/L kg/m
M/LLL kg/m³
M/LT kg/ms
MLL kgm²

N (No units specified)
P W

PT J
Q VAr
T s
V V
VI VA

Table 2: Allowed Units

 Example External Controller Code In Selected Languages
To assist the user to get started with the coding required for external controllers, this
section presents a few simple examples.

S imple example of DLL code written in C
#include <stdio.h>
#include <string.h>
#define NINT(a) ((a) >= 0.0 ? (int)((a)+0.5) : (int)((a)-0.5))

extern "C" //avoid mangled names
{ void __declspec(dllexport) __cdecl DISCON(float *avrSwap, int *aviFail,
char *accInfile, char *avcOutname, char *avcMsg);
}

//Main DLL routine
void __declspec(dllexport) __cdecl DISCON(float *avrSwap, int *aviFail,

char *accInfile, char *avcOutname, char *avcMsg)
{

char Message[257], InFile[257], OutName[1025];
float rTime, rMeasuredSpeed, rMeasuredPitch;
int iStatus, iFirstLog;
static float rPitchDemand;

//Take local copies of strings
memcpy(InFile,accInfile, NINT(avrSwap[49]));
InFile[NINT(avrSwap[49])+1] = '\0';
memcpy(OutName,avcOutname, NINT(avrSwap[50]));
OutName[NINT(avrSwap[50])+1] = '\0';

//Set message to blank
memset(Message,' ',257);

//Set constants
SetParams(avrSwap);

//Load variables from Bladed (See Appendix A)
iStatus = NINT (avrSwap[0]);
rTime = avrSwap[1];
rMeasuredPitch = avrSwap[3];
rMeasuredSpeed = avrSwap[19];

//Read any External Controller Parameters specified in the User Interface
if (iStatus == 0)
{

*aviFail = ReadData(InFile, Message); //User to supply this routine
rPitchDemand = rMeasuredPitch; //Initialise

}

//Set return values using previous demand if a sample delay is required
avrSwap[44] = rPitchDemand;

//Main calculation //User to supply calcs routine
if (iStatus >= 0 && *aviFail >= 0)

*aviFail = calcs(iStatus, rMeasuredSpeed, rMeasuredPitch,
&rPitchDemand, OutName, Message);

//Logging output - example
avrSwap[64] = 2; //No of outputs
iFirstLog = NINT(avrSwap[62])-1; //Address of first output
strcpy(OutName, "Speed:A/T;Pitch:A"); //Names and units
avrSwap[iFirstLog] = rMeasuredSpeed; //First Value
avrSwap[iFirstLog+1] = rMeasuredPitch; //Second value

//Return strings
memcpy(avcOutname,OutName, NINT(avrSwap[63]));
memcpy(avcMsg,Message,MIN(256,NINT(avrSwap[48])));

return;

}

S imple example of DLL code written in FORTRAN 90

SUBROUTINE DISCON (avrSWAP, aviFAIL, accINFILE, avcOUTNAME, avcMSG)
IMPLICIT NONE

!Compiler specific: Tell the complier that this routine is the entry point for the DLL

!The next two lines are for the case of the Digital Visual Fortran compiler
CDEC$ ATTRIBUTES DLLEXPORT :: DISCON
CDEC$ ATTRIBUTES ALIAS:'DISCON' :: DISCON
!The Lahey LF90 compiler needs this line instead:
DLL_EXPORT DISCON
!For other compilers: read the documentation to find out how to do this

REAL AV_ avrSWAP(*)
INTEGER*1 accINFILE(*), avcOUTNAME(*), avcMSG(*)
INTEGER aviFAIL

INTEGER*1 iInFile(256), iOutName(1024), iMessage(256)
CHARACTER cInFile*256, cOutName*1024, cMessage*256
EQUIVALENCE (iInFile, cInFile), (iOutName, cOutName), (iMessage, cMessage)
INTEGER I, iStatus
REAL rTime, rMeasuredPitch, rMeasuredSpeed, rPitchDemand
SAVE rPitchDemand

!This just converts byte arrays to character strings, for convenience
DO I = 1,NINT(avrSWAP(50))
 iInFile(I) = accINFILE(I) !Sets cInfile by EQUIVALENCE
ENDDO
DO I = 1,NINT(avrSWAP(51))
 iOutName(I) = avcOUTNAME(I) !Sets cOutName by EQUIVALENCE
ENDDO

!Load variables from Bladed (See Appendix A)
iStatus = NINT(avrSwap(1))
rTime = avrSwap(2)
rMeasuredPitch = avrSwap(4)
rMeasuredSpeed = avrSwap(20)

!Read any External Controller Parameters specified in the User Interface
IF (iStatus .EQ. 0) THEN
 aviFail = ReadData(cInFile, cMessage) !User to suppply this routine
 rPitchDemand = rMeasuredPitch !Initialise
ENDIF

!Set return values using previous demand if a sample delay is required
avrSwap(45) = rPitchDemand

!Main calculation (User to suppply calcs routine)
IF (iStatus .GE. 0 .AND. aviFail .GE. 0) THEN
 aviFail = calcs(iStatus, rMeasuredSpeed, rMeasuredPitch, &
 rPitchDemand, cOutName, cMessage)
ENDIF

!Return strings
DO I = 1,NINT(avrSwap(64))
 avcOutname(I) = iOutName(I) !same as cOutName(I) by EQUIVALENCE
ENDDO
DO I = 1,MIN(256,NINT(avrSwap(49)))
 avcMsg(I) = iMessage(I) !same as cMessage(I) by EQUIVALENCE
ENDDO

RETURN
END

S imple example of EXE code written in FORTRAN 90

IMPLICIT NONE
LOGICAL lOK
INTEGER iERROR, iUNIT, iFail, iSTATUS, iStarted
REAL rTime, rPitchDemand, rMeasuredPitch, rMeasuredSpeed

!First open the swap file
L_UNIT = 99
OPEN(L_UNIT, FILE='DISCON.SWP', ACCESS='DIRECT', FORM='UNFORMATTED', RECL=4, &
 ACTION='READWRITE,DENYNONE', IOSTAT=iERROR)
IF (iERROR.NE.0) STOP 'Could not open swap file'

!Set initialisation flag
iStarted = 0

!Write zero to record 1
WRITE(iUNIT, REC=1, IOSTAT=iERROR) 0
CLOSE(iUNIT)
IF (iERROR.NE.0) STOP 'Could not write to swap file'

!Wait for Bladed
lOK = .TRUE.
DO WHILE (lOK)
 OPEN(iUNIT, FILE='DISCON.SWP', ACCESS='DIRECT', FORM='UNFORMATTED', RECL=4, &
 ACTION='READWRITE,DENYNONE', IOSTAT=iERROR)
 IF (iERROR.NE.0) STOP 'Could not re-open swap file'
 READ(iUNIT, REC=1, IOSTAT=iERROR) iSTATUS
 IF (iERROR.NE.0) STOP 'Could not read status from swap file'
 IF (iSTATUS.EQ.-1) THEN
 !End of simulation
 lOK = .FALSE.
 ELSEIF (iSTATUS.EQ.0) THEN
 !Still waiting
 CALL SLEEPQQ(1) !Wait 1 millisecond; Compiler-dependent subroutine.It may be
 !unneccessary, but may help to prevent problems on a slow network.
 ELSEIF (iSTATUS.EQ.1) THEN
 !Read from swap file
 READ(iUNIT, REC=2, IOSTAT=iERROR) rTime
 READ(iUNIT, REC=4, IOSTAT=iERROR) rMeasuredPitch
 READ(iUNIT, REC=20, IOSTAT=iERROR) rMeasuredSpeed

 IF (iStarted .EQ. 0) THEN
 iFail = ReadData('DISCON.IN') !User to suppply this routine
 rPitchDemand = rMeasuredPitch !Initialise
 ENDIF

 !Set return values using previous demand if a sample delay is required
 WRITE(iUNIT, REC=45, IOSTAT=iERROR) rPitchDemand

 !Main calculation (User to suppply calcs routine)
 IF (iStarted .GE. 0 .AND. iFail .GE. 0) THEN
 iFail = calcs(iStarted, rMeasuredSpeed, rMeasuredPitch, rPitchDemand)
 ENDIF

 iStarted = 1

 ELSE
 STOP 'Handshake status incorrect'
 ENDIF

 CLOSE(iUNIT)

ENDDO

STOP
END

	Bladed user-defined controllers in versions prior to version 4.4
	Writing a user-defined controller as an executable program
	Writing a user-defined controller as a dynamic link library

	Communication Between Bladed And External Controllers
	Data exchange records
	Record 1: the Status flag
	Sending messages to the simulation
	Pitch and torque override
	A.5 Sending logging output to Bladed

	 Example External Controller Code In Selected Languages
	Simple example of DLL code written in C
	Simple example of DLL code written in FORTRAN 90
	Simple example of EXE code written in FORTRAN 90

