Integrating Bladed with Reliability based design methods
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"The world is noisy and messy.
You need to deal with the uncertainty”

- Daphne Koller
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What is probabilistic design? - the technical concept
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What is probabilistic design? - the technical concept
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Why probabilistic design? — the technical motivations

i) Current safety-factor based design methods are potentially over-conservative
— don’t treat structural reliability on a entirely rational basis, and

i) Approaches to life assessment utilized in the wind industry today are often
highly simplistic

iii) The fourth edition of the IEC 61400-1 international design standard for wind
turbines - due for publication in 2015 - is likely to contain provision for more
probabilistic-based approaches to design

iv) GL 2010 & 2012 guidelines already make provision for the use of more
advanced probabilistic-based design methods
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Probabilistic design - the building blocks

= Annual probability of failure calculation for each turbine component (and failure
mode) 2 “Target Pf"~1-5e-4

= Specific probabilities of failure are well understood by year and component

= Treatment of uncertainty in a more rigorous manner

= Consistent level of safety across all turbine components

Ultimate objective: use probabilistic
design approach that rationally
balances reliability and costs
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How does probabilistic design proceed? - the technical approach
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How does probabilistic design proceed? - the technical approach

Three main steps:
- STEP A: Define numerical model (eg. Bladed, FEA, etc)
- STEP B: Define uncertainties in i) inputs and ii) sub-models

- STEP C: Propagate uncertainties through the model

Step B Step A Step C
Quantification of Model(s) of the system Uncertainty propagation
sources of uncertainty Assessment criteria
Random variables Mechanical model Moments

! Probability of failure
I Response PDF

- STEP C’: Sensitivity analysis
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Step A: Stochastic model set-up

If we are interested in a component ‘limit state’, then the model
needs to combine load and strength elements:
-> G - function

[ G(X,Y) = S(X) - L(Y), G < 0O: failure }

L: load model
S: strength model
X,Y: stochastic parameters

Probability of failure = P[G<O0]
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Step B: Uncertainty quantification: some input examples

Blade mass

Yield strength

Miner’s rule
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Step C: Structural reliability analysis, uncertainties propagation

G(X,Y) = S(X) - L(Y), P; = P[G < 0]

FORM: First Order Reliability Method, SORM: Second Ordetr...
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Examples of Structural Reliability
Analysis (SRA)
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Probabilistic design methods for fatigue limit states

Generalized method for geometrically
complex components (hub, mainframe)
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Probability of failure for tower fatigue - example

Probability of failure (Pf) calculated from all fatigue cases using FORM:
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Annual P;at year 25: 1.13e-4 ~ Pf_target (1e-4)
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Limit state function for tower buckling - example

= From original design: Safety Margin ~5% at worst height, driving uload from
dic4.2

= Probability of failure (Pf) calculated for each DLC independently using FORM:

Annual Pf (inc.
Prob occ)

dic4.2
dlcL3 importance
dicLa factors

dicl.5s
dlcl.ba . Yield Stress
dic2.1

dic2.2
dic2.3
dicd.2 3.93E-05
dlcs.1
dlc6.1a
dlce.2a
dlce.3a
dlc7.1a
dic8.1
dics.2

DLC

= Pf from dic4.2: 3.93e-5 < Pf_target (1e-4) Buckling

Reduction
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Probability of failure for mainframe extreme - example

= Structural reliability (e.g., FORM) methods enable the design team to incorporate
non-generic material strength statistics derived from testing, e.qg.,:

Cast iron yleld strength (EN- G.IS-400 18U- I.T 60mm<t<200mm)
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Other examples of limit state functions (G)

Tip to tower closest approach Blade flutter point

Probabilistic approach:
G = 1 - Flutter(x)?
Flutter: 1=Yes, 0=No

Deterministic approach:
G = S - MaxDef*PSF*1.1

Probabilistic approach:

X = stochastic variables
G = S(x) - MaxDef(x) H
for a particular rpm

i

S = static clearance
MaxDef = Max blade def in front of tower

X = stochastic variables
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Probabilistic Turbine Conceptual Design Tool

= User can define a large range of probabilistic input variables relating to the
turbine, its installation, and operation within the wind farm.

= Assess the cumulative impact of uncertainty on output variables such as cost of
energy.

= Probabilistic technology evaluation and quantification of the design space
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Probabilistic-based Design Support from DNV GL

- Uncertainty quantification analysis for loading and strength models and

inputs, including the development of meta-models
- Stochastic limit state (g) function development for key structural components
- Structural reliability analysis using FORM, SORM and Monte Carlo techniques
- Statistical analysis of material strength derived through testing

- Comparison of probabilistic-based design outputs with the classical ‘safety

factor” approach
- Component life assessment, integrity management and risk-based inspection

- Training and knowledge transfer
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"What we know is a drop.
What we don’t know is an ocean”

- Isaac Newton
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Thanks for your attention

Garrad Hassan Turbine Engineering
ricard.buils@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

XEMC Private and confidential
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