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LIght Detection And Ranging (LIDAR)

Remote sensing technology similar to RADAR (RAdio Detection And Ranging) and
SONAR (SOund Navigation And Ranging)

Detection or navigation are referred to locating objects that could be in the air,
space, underwater and underground

Aim is to determine the distance or range of and object where time is crucial

LIDAR uses light from a laser to image objects like aerosols
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LIDAR types used in wind turbines

= Coherent or direct detection: these systems measure a Doppler shift information

= Achieved by comparing the frequency of the original and the backscattered light

= The Doppler frequency shift gives direct information of the wind speed component
along the line-of-sight of the beam.

= Based on the waveform, LIDAR systems can be classified in pulsed or continuous
wave

= The estimated wind speed is very useful information to the wind turbine controller
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Turbine mounted LIDAR

= Laser Doppler anemometer: Laser beam projected forward from turbine provides
advance information about the approaching wind field

Pulsed LIDAR Continuous Wave LIDAR
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Turbine mounted LIDAR

Scanning patterns:

= Scanning or multiple fixed beams
= Single or multiple distances

= Different figures as scanning patterns
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LIDAR modelling in Bladed
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LIDAR modelling in Bladed
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LIDAR modelling in Bladed

The weighting function combines measurements of the wind speed at a range of

distances along the beam line to calculate the returned wind speed.
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LIDAR modelling in Bladed

LIDAR Beams | Weighting Function |
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LIDAR modelling in Bladed
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Bossanyi, E.A. “Un-freezing the turbulence: improved wind field modelling for investigating Lidar—assisted wind

turbine control,” in Proceedings of the European Wind Energy Copenhagen, Denmark, 2012.
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LIDAR modelling in Bladed
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LIDAR modelling capabilities in Bladed: Summary

= Different LIDAR configurations can be simulated

= A LIDAR beam can be emitted from a point fixed to the nacelle or the spinner or
the blade.

= Continuous wave or pulsed beams can be modelled

= Multiple beams can be modelled: for example a number of beams pointing in
different directions and radial stations

= Simultaneous measurements are possible at multiple focus distances (ranges).

= Scanning or steering of the LIDAR beam(s), and/or changes to the focus
distance(s) and timing of samples can be defined by the external controller

= The wind velocity relative to the LIDAR is sampled along the beam line, taking
into account any velocities of the LIDAR itself due to motion or structural vibration
of the part of the turbine to which it is mounted.

= Around each focus point, the wind velocity is sampled at a number of points along
the beam line.

= A weighting function is used for averaging the line-of-sight velocities
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LIDAR Assisted Control

Wind field

Feedforward Wind
Controller Turbine

Feedback
Controller

Bossanyi, E. A. Kumar, A. and Hugues-Salas, O. "Wind turbine control applications of turbine-mounted LIDAR”
Journal of Physics: Conference Series 555 (2014) 012011
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Lidar Assisted Control
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Feedforward method:
= Take future estimated wind speed from LIDAR and look up for future steady-

state pitch angle
= Add pitch rate obtained from the difference between present and future pitch
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LIDAR Feedforward: Simulation results
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= 7% lifetime fatigue load reduction
in tower base bending moment with
Feed Forward Control

= Model Predictive Control (MPC)
improves this to 11%

* Dobbin, J. et. al., “Fully Integrated Design: Lifetime Cost of Energy Reduction for Offshore Wind” Proceedings

of the Twenty-fourth, International Ocean and Polar Engineering Conference, 2014, vol. 3, pp. 415-423.
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Field test results at NREL with five-beam LIDAR
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= A field-testing campaign to test LIDAR v |

Assisted Control (LAC) has been
undertaken on a 600-kW turbine using
a fixed, five-beam LIDAR system.

= The campaigh compared the
performance of a baseline controller to
four LACs with progressively lower
levels of feedback using 35 hours of
collected data.

Photo Credit: Lee Jay Fingersh, NREL 33621

Kumar at al. “Field testing of LIDAR assisted feedforward control algorithms for improved speed control and
fatigue load reduction on a 600kw wind turbine”, EWEA Paris, France, November 2015.

Bossanyi, EA et al., "Wind turbine control applications of turbine-mounted LIDAR,” Proc. Torque From Wind
conference, Oldenburg, Germany, 2012.
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Field test results at NREL with five-beam LIDAR

= Collected data shows that utilising measurements from multiple range gates on a
pulsed LIDAR system can result in rotor averaged wind speed (RAWS) estimates

with greater levels of correlation with wind speed at the rotor than using a single
range gate.

= The LACs showed higher levels of speed control performance with significantly
reduced levels of pitch activity and/generally lower levels of tower excitation.
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Field test results at NREL with five-beam LIDAR

= The feedforward control algorithm makes use of the RAWS data from three range
gates focused at 50, 65 and 80m.

= These gates correspond to covering the centre and approximately 63%-100% of
the rotor radius using a beam angle of 15° from horizontal.

= The LIDAR processes the line-of-sight data to return the current RAWS, wind
shear and wind direction estimate for each range gate.
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Field test results: 38% Controller Gain
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Bladed Hardware Test Module
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Bladed Hardware Test Module (BHTM)

= Connects several devices (software or hardware) together and pass information
between those devices

= Defines test procedures composed by sequential instructions

= Contains a .NET C# scripting environment for coding in hand-written logic
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Bladed Hardware Test Module (BHTM)

Transforms the Bladed design simulation to a real-time hardware-in-the-loop
simulation

Use the same turbine model developed in turbine design and load calculations

Customise the Bladed simulation to model complex behaviour

Flexibly connect turbine hardware to the simulation

Versatile set of input/output modules easily added to the simulation

Test scripting system to manipulate the simulated environment and evaluate
pass/fail results

Hardware in the loop tests can reduce the risk of failures, delays and expensive
rework in commissioning and actual turbine use, can improve confidence in the
turbine product and could help with procurement decisions.
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